Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
Rev. Soc. Bras. Med. Trop ; 47(5): 624-631, Sep-Oct/2014. tab, graf
Article in English | LILACS | ID: lil-728902

ABSTRACT

Introduction Microsporidia constitute the most common black fly pathogens, although the species' diversity, seasonal occurrence and transmission mechanisms remain poorly understood. Infections by this agent are often chronic and non-lethal, but they can cause reduced fecundity and decreased longevity. The objective of this study was to identify microsporidia infecting Simulium (Chirostilbia) pertinax (Kollar, 1832) larvae from Caraguatatuba, State of São Paulo, Brazil, by molecular and morphological characterization. Methods Larvae were collected at a single point in a stream in a rural area of the city and were kept under artificial aeration until analysis. Polydispyrenia spp. infection was characterized by the presence of at least 32 mononuclear spores measuring 6.9 ± 1.0 × 5.0 ± 0.7µm in persistent sporophorous vesicles. Similarly, Amblyospora spp. were characterized by the presence of eight uninucleate spores measuring 4.5 × 3.5µm in sporophorous vesicles. Results The molecular analysis confirmed the presence of microsporidian DNA in the 8 samples (prevalence of 0.51%). Six samples (Brazilian larvae) were related to Polydispyrenia simulii and Caudospora palustris reference sequences but in separate clusters. One sample was clustered with Amblyospora spp. Edhazardia aedis was the positive control taxon. Conclusions Samples identified as Polydispyrenia spp. and Amblyospora spp. were grouped with P. simulii and Amblyospora spp., respectively, corroborating previous results. However, the 16S gene tree showed a considerable distance between the black fly-infecting Amblyospora spp. and the mosquito-infecting spp. This distance suggests that these two groups are not congeneric. Additional genomic region evaluation is necessary to obtain a coherent phylogeny for this group. .


Subject(s)
Animals , Microsporidia/classification , Simuliidae/microbiology , Larva/microbiology , Microsporidia/genetics , Microsporidia/isolation & purification , Phylogeny , Polymerase Chain Reaction , Seasons , Simuliidae/classification
2.
Mem. Inst. Oswaldo Cruz ; 98(5): 697-702, July 2003. tab
Article in English | LILACS, SES-SP | ID: lil-344292

ABSTRACT

The study was set up to evaluate the impact of two commercial larvicide formulations, Bacillus thuringiensis serovar israelensis base (Bti) at 15 ppm/1 min and temephos at 0.03 ppm of active ingredient, used to control Simulium pertinax populations, on associated non-target entomofauna occupying the same breeding sites. The experiments were carried out on the Pedra Branca and Muricana rivers, on the slopes of Serra do Mar massif, municipality of Paraty, state of Rio de Janeiro, Brazil. Bti was applied to the river Pedra Branca and temephosto theriver Muricana. On both rivers, treatment and control sections were labeled as such, each one with two observation posts: slow moving water and fast water regions respectively. Artificial substrata was used to evaluate the abundance of associated entomofauna. Attached immature stages of arthropods were removed from both of its surfaces fortnightly. Were collected, from the two rivers, 28 477 specimens of the entomofauna associated with S. pertinax. The families Hydropsychidae, Chironomidae, Bactidae, Simuliidae, Blephariceridae and Megapodagrionidae were represented. These was an impact of temephos on the entomofauna associated with S. pertinax only in Simuliidae and Chironomidae, and to Bti only in Simuliidae. However, the reduction in their numbers was not statistically significant


Subject(s)
Animals , Arthropods , Bacillus thuringiensis , Temefos , Environmental Monitoring , Insecticides, Organophosphate , Simuliidae , Temperature , Water Movements , Water Pollutants, Chemical , Brazil , Mosquito Control , Population Density , Hydrogen-Ion Concentration , Larva
SELECTION OF CITATIONS
SEARCH DETAIL